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ABSTRACT

Recently it was pointed out that nonmodally (tran-
siently and/or adiabatically) pre-amplified waves in
shear flows, undergoing subsequent viscous damp-
ing, can ultimately heat the ambient flow. The key
ingredient of this process is the ability of waves to
grow, by extracting energy from the spatially inho-
mogeneous mean flow. In this paper we examine this
mechanism in the context of the solar coronal plasma
flows. “Self-heating” (SH) processes are examined
when both viscous damping and magnetic resistivity
are at work. We show that if the plasma viscosity is
in the favorable range of values the asymptotic SH
rate in these flows can be quite substantial.

1. INTRODUCTION

Astrophysical plasma flows are often complex, inho-
mogeneous, dynamic systems hosting different kinds
of collective phenomena. Sometimes interactions be-
tween collective phenomena and ambient flows fea-
ture a highly sophisticated level of complexity. In
general, shear flows (SF) are well-known examples of
behavioral complexity - both in neutral and charged
fluids, both for terrestrial and astrophysical cases
and both on the level of experiments (observations)
and theory (simulations) - SF display a wide spec-
trum of “shear-induced” phenomena. In particular,
astrophysical SF are gradually becoming a popular
subject of research because it becomes increasingly
more clear that most of the cosmic plasmas are flow-
ing with spatially inhomogeneous rates and in most
of these flows shear-induced processes may leave a
considerable imprint on the observational appear-
ance of the related astronomical objects.

A separate class of shear-induced phenomena is re-
lated with the non-self-adjointness of the linear op-
erators governing the dynamics of SF systems (Tre-
fethen et al. 1993). Fluctuations in a “parent”
SF obey “non-Hermitian” equations and, therefore,
their evolution, their interaction with the ambient
flows can not be molded within the standard Hamil-
tonian formalism. The most striking novelty is the
appearance of new, shear-induced nonperiodic modes
- so-called Kelvin or shear vortices. Interactions
between the modes and between the flow and the
modes bring into the game a nonmodal complexity:
these “non-normal” modes show a transient increase
in amplitude, they are coupled and are transformed
into each other, they may feature beating phenom-

ena and may become the subjects of different shear
instabilities.

Recently it was pointed out that SF may host yet
another interesting non-modal phenomenon related
with the combined presence of nonmodality and dis-
sipative processes in the flows. It can formally be
considered as a three-phase process (Rogava 2004):

1. waves and/or vortices get excited within a flow;

2. they amplify nonmodally, due to the presence
of the shear flow, extracting a part of the flow
kinetic energy;

3. high-amplitude waves and/or transiently ampli-
fied vortices undergo a viscous decay and/or
magnetic diffusion and give, in the form of heat,
a part of their energy back to the flow.

As a result of this three-step process the fluctuation
gives back to the flow more thermal energy than it
had at the moment of its excitation. Repeated con-
tinuously, throughout the whole volume of the flow,
these elementary processes should lead to a net heat-
ing of the flowing plasma. The process was named
“self-heating” (SH), because what actually happens
is that nonmodality manages to transfer a part of the
flow’s regular kinetic energy into a thermal energy;
i.e., the heating happens conservatively without any
outside source of energy, the flow manages to heat
itself.

The possibility of this process was originally sur-
mised in (Rogava 2003a) and later it was examined
and specified in detail for the relatively simple case
of a neutral fluid SF and sound waves sustained by
it (Rogava 2004). It was shown that in the hydro-
dynamic situation - even when a mixture of sound
waves and Kelvin vortices is propagating in a simple,
plane-parallel Couette-like SF and, therefore, acous-
tic waves are able to amplify only linearly, extract-
ing the kinetic energy of the ambient flow - the self-
heating rate can be quite high: fluctuations are able
to give back to the flow several times more energy
than they have initially had.

The purpose of this paper is to explore whether the
SH can be efficient in magnetized plasma MHD flows.
In this particular study we consider only the case
of a plane-parallel flow with a linear velocity profile.
However, in order to lay the foundation for a further,



more general, consideration of flows with kinematic
complexity we derive our equations for the case of
swirling (helical) flows, following the approach devel-
oped in (Rogava et al. 2003a and 2003b) (henceforth
referred to as R1 and R2) and consider the case of
the plane-parallel flow as a particular example.

Our results show that both in the incompressible
(when the flow sustains only Alfvén waves) and in
the compressible (full spectrum of MHD waves) cases
the self-heating is even more efficient than it was in
the hydrodynamic case. Our numerical simulations
revealed that the values of the dimensionless asymp-
totic SH rate Ξ∞ can be of the order of several tens.
This allows us to argue that the SH may easily be
one of the robust physical mechanisms contributing
to the heating of the solar corona through the vis-
cous and/or resistive damping of nonmodally pre-
amplified waves.

It should be noted that nonmodal SH, being effi-
cient per se possesses another attractive feature in
the context of its possible relevance for coronal heat-
ing: all existing wave heating scenarios face common
problem: how is the energy transferred from longer
length-scales to shorter ones, where dissipative ef-
fects are significant?! SH phenomena, being non-
modal, involve the shear-induced drift of the wave
number vector k(t), which provides a natural, flow-
related mechanism for the gradual decrease of the
mode’s length-scale. This process, being linear in
plane-parallel SF, may have an exponentially fast na-
ture in geometrically and kinematically more sophis-
ticated cases. Therefore, we envisage that kinemat-
ically complex flow patterns, such as solar spicules,
macrospicules and tornados, magnetic plumes, might
host much more efficient, sometimes even explosive,
SH events.

2. MAIN CONSIDERATION

The present study follows the theory of nonmodal
phenomena in helical MHD flows, recently developed
both for the incompressible (R1) and the compress-
ible (R2) cases. The difference between our current
and those studies is in the presence of a dissipation
- viscous damping and/or magnetic resistivity - rep-
resented in the equations by terms proportional to
the coefficients of kinematic viscosity (νh) and mag-
netic resistivity (νm), respectively. Since a nonmodal
analysis is essentially linear, the instantaneous values
of all physical variables have to be splitted into their
equilibrium and fluctuative components: B≡B0+B′,
ρ≡ρ0 + ρ′, etc; with the subsequent linearization of
the equations for perturbations.

The equilibrium, considered in R1 and R2, assumes
a homogeneous MHD plasma (ρ0 = const) flow, em-
bedded in a homogeneous, vertical magnetic field
(B0≡[0, 0, B0 = const]). The mean flow vector

field U0(r) in the R1 was specified as:

U(r)≡[0, rΩ(r), U(r)], (1)

with Ω(r) = A/rn, where r = (x2 + y2)1/2 is a dis-
tance from the rotation axis, while A and n are some
constants.

If we take into account the viscous damping and mag-
netic resistivity then linearized equations for fluctu-
ations can be written as [Dt≡∂t + (U0·∇)]:

Dtd + ∇·u = 0, (2)

Dtu+(u·∇)U0 = −∇p+C2
A[∂zb−∇bz]+νh∆u, (3)

Dtb = (b·∇)U0 + ∂zu + ez(∇·u) + νm∆b, (4)

∇·b = 0, (5)

with d ≡ ρ′/ρ0, p ≡ p′/ρ0 and b ≡ B′/B0. Note
that for incompressible fluctuations instead of (2) we
have:

∇·u = 0, (6a)

while for the compressible case the closure of the (2-
5) is guaranteed by the equation of state, implying:

p′ = C2
sρ′, (6b)

with Cs and CA being the homogeneous speed of
sound and the Alfvén speed, respectively.

The nonmodal method for studying the dynamics of
linearized, small-scale fluctuations in kinematically
complex flows (Lagnado et al. 1984, Craik and Crim-
inale 1986, Mahajan and Rogava 1999) enables the
reduction of the initial set of partial differential equa-
tions for the perturbation variables F (r, t) in the real
physical space to initial value problem for the spa-
tial Fourier harmonics (SFH) of the same variables,

F̂ (k, t)), defined in the k-space. The key element of
this approach is the time variability of the k(t)’s, im-
posed by the presence of the shear flow and governed
by the following set of equations [∂n

t f≡f (n)]:

k(1) + ST · k = 0, (7)

which gives, depending on the particular form of the
shear matrix S (Mahajan and Rogava 1999), a full
evolutionary picture of the temporal drift of the wave
number vector field k(t).

For a helical flow, specified by the equilibrium ve-
locity (1) and with five nonzero components of the
traceless shear matrix (specifying the stretching of
flow-lines (σ), velocity shear in rotational (A1 and
A2) and ejectional (C1 and C2) components of the
velocity, respectively) kz stays constant, while the
transversal components obey (R1):

k(1)
x + σkx + A2ky + C1kz = 0, (8a)

k(1)
y + A1kx − σky + C2kz = 0, (8b)



implying that kx(t) and ky(t) may have an algebraic,
exponential or periodic time dependence.

The ordinary nonautonomous differential equations
for the SFH of physical variables can be derived from
the set (2–5) and written in the following way:

̺(1) = k · v, (9)

v(1)
x +(S ·v)x = −kxP +C2

A(kzbx −kxbz)− νh|k|
2vx,

(10a)

v(1)
y +(S ·v)y = −kyP +C2

A(kzby − kybz)− νh|k|
2vy ,

(10b)

v(1)
z + (S · v)z = −kzP − νh|k|

2vz, (10c)

b(1)
x = (S · b)x − vx − νm|k|2bx, (11a)

b(1)
y = (S · b)y − vy − νm|k|2by, (11b)

k · b = 0. (12)

The total energy of the perturbation consists of a
compressional, a kinetic and a magnetic part (the
first part is absent in the incompressible limit) and
is equal to:

E ≡ [C2
s̺2 + C2

Ab2 + v2]/2, (13)

This total energy obeys the following nonau-
tonomous equation:

E(1) = (A1 + A2)(bxby − vxvy)+

+C1(bxbz − vxvz) + C2(bybz − vyvz)+

+σ[(b2
x − b2

y)− (v2
x − v2

y)]− |k|2[νhv
2 + νmb2]. (14)

Finally, following the hydrodynamic case (Rogava
2004), we define the asymptotic self-heating rate as
the limit

Ξ∞ ≡ lim
t→∞

Ξ(t), (15)

of the following function:

Ξ(t) ≡
1

E(0)

∫ t

0

[

νhv
2(t′) + νmb2(t′)

]

|k|2(t′)dt′,

(16)

In this short paper our purpose is not the study
of fully complex helical flows. Rather, we wish to
demonstrate the efficiency of the self-heating for rela-
tively simple, plane-parallel velocity patterns of mag-
netized plasmas. Therefore, we consider only the
simplest, plane-parallel flow case both for incom-
pressible and compressible fluctuations.

2.1 Incompressible limit

In this case (6a) holds leading to the algebraic re-
lation: (k · v) = 0. The flow sustains only Alfvén
waves, strongly modified by the presence of the SF.

The efficiency of the wave heating mechanism
strongly depends on temporal scales of the wave ex-
citation/damping. In our case, incompressible MHD
disturbances are able to amplify transiently, within
a very short time interval, compared to the total
timescale of the wave evolution (Chagelishvili et al.
1993). This makes this process a quite efficient mech-
anism for the excitement of large-amplitude Alfvén
waves. However, when dissipation (viscous damp-
ing and/or magnetic resistivity) is also taken into
account, it is reasonable to expect that under favor-
able conditions the “pre-amplified” Alfvén waves will
eventually give their energy1 back to the flow in the
form of heat.

In order to give an illustrative example we solved
the set of equations numerically for different values
of the parameters, roughly typical for various struc-
tures of the solar atmosphere: VA = 100 km s−1,
Cx = 0.08 s−1, Cy = 0 s−1 and a fixed value of
wavenumber kz = 4 · 10−9 cm−1 corresponding to
the oscillation period T ≈ 2.6 min. In all our calcula-
tions we used the conventional value of the magnetic
resistivity coefficient (see Walsh & Ireland, 2003):
νm = 104cm2s−1. As regards the viscosity coeffi-
cient, since the presence or absence of the microtur-
bulence may change it by many orders of magnitude
(Ruderman et al. 1998), we were inclined to consider
it as a free parameter and we made a numerical anal-
ysis for different values.

It was found that when the shear viscosity is deter-
mined only by the momentum transfer due to ion
diffusion and, therefore νh ≃ νm (Ruderman et al.
1998) the actual timescale of the viscous damping is
too large. Therefore, the damping of these waves in
a laminar flow with low values of νh and νm could
hardly account for the spatially confined processes of
the coronal heating.

However, if one assumes that a microturbulence can
be present in the coronal plasma, it may increase the
viscosity coefficient in a very considerable way. In
this case the temporal scale of the viscous damp-
ing for transiently pre-amplified waves drastically
changes. In particular, it was found that when
νh ≥ 109 cm2 s−1, Alfvén waves with the above-
specified parameters damp efficiently within physi-
cally reasonable time intervals. In other words, the
viscosity coefficient has to be increased by at least
a factor of 105, compared to its laminar value, in
order to guarantee effective damping. Still, this is
about five orders of magnitude less than values of
the νh necessary for the efficient coronal heating via

1Which they have just “stolen” from the flow via shear-
induced transient amplification!
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Figure 1. The temporal evolution of the by component of the magnetic field perturbation (panel A) and the
normalized energy E/E(0) and self-heating function (panel B) for the following values of medium and wave
parameters: VA = 100 km s−1, Cx = 0.08 s−1, Cy = 0 s−1, η = 104 cm2 s−1, ν = 109 cm2 s−1, kz = 4 · 10−9

cm−1 corresponding to the oscillation period T ≈ 2.6 min.

the conventional wave heating mechanisms (Ruder-
man et al. 1998). In the case of the SH of transiently
pre-amplified Alfvén waves efficient dissipation oc-
curs even for these, relatively “mild” (∼ 109cm2 s−1)
values of the viscosity coefficient!

Since the waves were considerably amplified before
starting to decay it is reasonable to expect that
they give back to the flow much more energy than
they initially had at the moment of excitation. This
means that the self-heating mechanism works and
the plasma gets heated via the combined action of
nonmodal transient pre-amplification of waves and
their subsequent viscous decay. In panel A of Fig. 1
we show the temporal evolution of the magnetic field
component by (the values are scaled up by the factor
102). In panel B of the same figure the curves show-
ing the temporal behaviour of the normalized total
energy E/E(0) of the perturbation (dashed line) and
the SH rate function Ξ(t) (solid line) are presented.

2.2 The compressible medium

For compressible perturbations the closure of the set
of equations comes from the Eq. (6b). In this case all
three MHD waves can exist and in shear flows their
nonmodal mutual transformation (Chagelishvili, Ro-
gava and Tsiklauri 1996) may take place. Since we
are interested in the perspectives for the nonmodal
SH in solar coronal flows, we have to concentrate on
the low plasma β case. In this case the slow mode
is decoupled from two other MHD wave modes, but
the Alfvén and fast magnetosonic modes are coupled
and may transform into each other (Rogava, Poedts
and Mahajan 2000).

The governing equations were solved numerically for
the following set of parameters: Cs = 5 · 106 cm
s−1, VA = 8 · 107 cm s−1, η = 104 cm2 s−1, and
Cx = 0.04 s−1. In Fig. 2 the temporal evolution of
the dimensionless density perturbation is plotted. In
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Figure 2. The dimensionless density perturbation d
vs. time (seconds) for the values of the medium and
wave parameters: Cs = 5 · 106 cm s−1, VA = 8 · 107

cm s−1, η = 104 cm2 s−1, ν = 5 · 1011 cm2 s−1,
Cx = 0.04 s−1 and Cy = 0 s−1.

addition, we present in Fig 3 the curves of variation
of the normalized total energy E/E(0) of perturba-
tions and the function Ξ(t) of the SH rate.

The evolution of the initially excited Alfvén wave
formally may be splitted into three stages:

1) In the initial stage t . 500 s (kx(t) > 0) we have
a pure Alfvén mode and its energy slowly decreases
in time (thick dashed line in Fig.3). Here we also
show the evolution of the total energy in the shear-
less limit (Cx = 0) by the thin dashed-dotted line.
We can see that at this stage of the evolution, in both
cases, the energy evolves similarly: these curves al-
most coincide with each other. The slow dissipation
of the mode is represented by the slight increase of
the SH function both in the case of the non-uniform
flow (thick solid line) and in the case of the uniform
(shearless) flow (thin dotted line).
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Figure 3. The temporal evolution of the normalized
energy E/E(0) (dashed line) and self-heating func-
tion (solid line) corresponding to the solution given
in Fig. 2. By the dash-dotted and dotted lines the
same quantities are shown, respectively, for the case
of no shear flow Cx = 0.

2) At a certain stage (around the moment of time
when kx(t) ≈ 0) the Alfvén wave partially trans-
forms into the fast mode. This fact is represented by
the excitation of the density perturbation, see Fig. 2.
The perturbation starts extracting energy from the
mean flow2 (dashed line in Fig. 3). The presence of
the velocity shear leads to the further monotonous
decrease of the wavelength of the excited fast mode,
while kx(t) changes the sign and |k| starts growing
again, and the energy of the fast mode grows adia-
batically. But the efficiency of the dissipation grows
as well, as far as the length-scales become shorter,
and at a certain stage the energy of the fluctuation
ceases to increase and starts decreasing - the expo-
nential damping becomes prevalent, it starts domi-
nating over the linear, adiabatic increase of the wave
energy.

3) At the final stage of the evolution the dissipa-
tion effects prevail and the mode starts damping ef-
ficiently (see Fig. 2). Eventually all the energy ex-
tracted on the earlier stage by the wave from the
flow returns back to the flow in the form of thermal
energy (heat). The SH function rapidly grows and
reaches its asymptotic value (see plateau in Fig. 3)
when the wave is completely dissipated. This value is
approximately equal to the doubled maximum value
of the normalized wave energy. This situation is dif-
ferent from the previously considered incompressible
case, where the amplification of the perturbation had
a transient nature and occurred only within a very
small time interval. In that case the quantity of the
produced heat was roughly equal to the wave energy

2This situation drastically differs from the homogeneous
flow case, where the transformation of the Alfvén wave into the
fast mode does not happen and the energy of the perturbation
continuously decreases (dashed dot line in Fig. 3)

maximum (see panel B of Fig. 1).

In addition, we studied numerically the temporal
evolution of the Alfvén disturbances for three dif-
ferent initial values of kz for fixed values of all other
parameters. The results show that with the increase
of the initial wave number, for given values of dissipa-
tion coefficients, the SH rate decreases - the shorter
the initial wavelengths are, the sooner the time comes
when the damping effects prevail. Therefore, the
nonmodally excited fast mode has less time to gain
energy from the flow. A more efficient SH in this case
would require smaller values of the dissipation coef-
ficient. On the other hand, this process has another
limit: if we decrease the value of the initial wavenum-
ber the mentioned critical moment of time comes too
late and, therefore, the effective time scale of the
wave damping increases too much: the timescale of
the heat production becomes much larger than the
characteristic timescales related to the coronal situ-
ation.

Similarly, we have different regimes when we study
the self-heating process for a fixed value of the
wavenumber, but for different values of the viscos-
ity coefficient. For a given Alfvén mode there ex-
ist values of the viscosity coefficient for which the
wave amplification process is very intensive but the
effective time of transferring this energy back to the
background medium is too large to be interesting in
the solar coronal context. The SH process becomes
most efficient for larger viscosities. However, further
increase of the strength of the dissipation, again, de-
creases the SH rate, because the excited waves are
damped too rapidly, without significant nonmodal
amplification by the shear flow. Therefore, there is
a limited range of favorable viscosity levels, at which
the self-heating might be expected to be most effi-
cient.

3. CONCLUSIONS

The purpose of the present study was to clarify
whether the shear-induced amplification of MHD
waves coupled with viscous and magnetic-resistive
dissipation may lead to a significant self-heating of
the SF. In particular, our aim was to see whether
this mechanism could be efficient for solar coronal
plasma flows and could, arguably, contribute to the
heating of the solar corona.

Since the variety of solar plasma flows is quite wide,
both in terms of geometry and kinematics, the lo-
cal formalism employed and developed within this
study is apt for an arbitrary velocity pattern with the
condition that the involved MHD waves are having
length-scales, l, sufficiently smaller than the linear
length-scale, L, of a “parent” flow pattern. Basi-
cally, our consideration follows Rogava et al. (2003a,
2003b) with addition of dissipative effects related to
the presence of viscosity and magnetic resistivity.



In this paper we have examined only the case of the
simplest velocity pattern with plane-parallel and lin-
ear velocity profile. Both incompressible and com-
pressible limits were investigated. It was found that:

1. Incompressible, Alfvénic, perturbations, in the
ideal MHD limit, are known to undergo an alge-
braic instability (“transient increase”) (Chagel-
ishvili et al. 1993; Rogava et al. 1996, Rogava
et al. 2003a), which can be quite strong: un-
der favourable conditions the total energy of a
fluctuation may increase several hundred times.
We found that when dissipation is taken into ac-
count these high-amplitude pre-amplified Alfvén
waves get damped and give their energy back to
the ambient flow. The resulting SH is quite sub-
stantial. As it could be expected the asymptotic
self-heating rate in this case is quite large: it in-
creases with the decrease of the Alfvén velocity
and in the cases considered here could reach a
value of the order of several tens. This happened
to be a case for waves with the characteristic pe-
riods of the order of few minutes.

2. In the compressible case we considered the evo-
lution of an initially excited Alfvén wave (as an
example we considered Alfvén mode with period
of the order of 30 seconds) in a plane-parallel
flow pattern with the value of the plasma-β of
the order of 10−2, typical for the coronal en-
vironment. In this case Alfvén waves and fast
magnetosonic waves are coupled, which leads to
the transformation of initially Alfvénic fluctua-
tions into the fast ones 3 (Rogava et al. 2000).
We found (see Fig. 3) that this process, coupled
with the presence of viscous and resistive dissi-
pation, ensures the SH of the “parent” flow with
the asymptotic rate of the order of several tens.

These results are quite encouraging. We see that
even the simplest kinds of magnetized plasma SF’s
are able to heat themselves via the agency of non-
modally pre-amplified Alfvén waves. It is both
tempting and reasonable to surmise that in flow pat-
terns with a higher degree of kinematic complexity,
where nonmodal processes of energy exchange be-
tween flows and waves have a more intense nature
(Mahajan and Rogava, 1999), the resulting SH can
be considerably higher! In certain cases 4 individ-
ual flow patterns may tend to self-destruction, un-
dergoing self-imposed, catastrophically fast SH of an
eruptive, explosive nature. Further studies in this
vein are currently being carried out and the results
will be reported elsewhere.

3The latter wave, being of the acoustic nature, dissipates
quite similarly to plain sound waves, recently shown to be in-
strumental in the SH of compressible fluid shear flows (Rogava
2004).

4For instance, in flows with a helical mode of plasma mo-
tion (Rogava et al. 2003a, 2003b)

The astrophysically relevant conclusion of the
present study is that nonmodal self-heating, even for
relatively simple kinds of flows, parallel to the mag-
netic field and with shear profiles across the field,
can pay a significant contribution in the (still poorly
understood) phenomenon of solar coronal heating.
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